Group actions on Polish spaces

نویسندگان

چکیده

In this paper we investigate the action of Polish groups (not necessary abelian) on uncountable spaces. We consider two main situations. First, when orbits given by group are small and second family at most cou

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computable Polish Group Actions

Using methods from computable analysis, we establish a new connection between two seemingly distant areas of logic: computable structure theory and invariant descriptive set theory. We extend several fundamental results of computable structure theory to the more general setting of topological group actions. Among other results, we provide a new recursion-theoretic characterization of Σ3-orbits ...

متن کامل

Group Actions on Median Spaces

We investigate the geometry of median metric spaces. The group-theoretic applications are towards Kazhdan’s property (T) and Haagerup’s property.

متن کامل

Group Actions on Banach Spaces

We survey the recent developments concerning fixed point properties for group actions on Banach spaces. In the setting of Hilbert spaces such fixed point properties correspond to Kazhdan’s property (T). Here we focus on the general, non-Hilbert case, we discuss the methods, examples and several applications. 2010 Mathematics Subject Classification: 20J06, 18H10, 46B99

متن کامل

Polish Group Actions and Computability

Let G be a closed subgroup of S∞ and X be a Polish G-space with a countable basisA of clopen sets. Each x ∈ X defines a characteristic function τx on A by τx(A) = 1 ⇔ x ∈ A. We consider computable complexity of τx and some related questions.

متن کامل

Finite Group Actions on Siegel Modular Spaces

The theory of nonabelian cohomology is used to show that the set of fixed points of a finite group acting on a Siegel modular space is a union of Shimura varieties

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Banach Center Publications

سال: 2023

ISSN: ['0137-6934', '1730-6299']

DOI: https://doi.org/10.4064/bc125-10